Di recente è stato fatto uno sforzo per derivare e comprendere meglio l’equazione di Navier-Stokes (N-S), e si è scoperto che, sebbene l’equazione N-S sia stata dimostrata corretta da numerosi esempi, alcuni concetti e principi dietro l’equazione possono non essere corretti o coerenti. Per esempio, da un’analisi del semplice flusso di Couette classico, il requisito del tensore di stress simmetrico è di fatto in conflitto con la soluzione del flusso di Couette.
Per risolvere le incongruenze identificate in questa ricerca, viene suggerita una riformulazione del tensore totale per accogliere l’attrito fluido che ha una fisica solida, e il nuovo tensore totale potrebbe risolvere tutte le incongruenze e i conflitti identificati. Il tensore di attrito fluido appena definito viene quindi utilizzato per derivare l’equazione N-S e, come previsto, si ottiene la stessa equazione N-S della forma originale dell’equazione N-S per i flussi incomprimibili. Per i flussi comprimibili, per ottenere la stessa equazione N-S dell’equazione N-S originale, è necessaria un’assunzione leggermente diversa ma comunque molto simile a quella fatta da Stokes nel 1845.
È intenzione dell’autore che l’equazione N-S sotto il nuovo tensore totale definito abbia concetti e principi di fondo diversi ma ancora più fisici. Si spera che la rivisitazione dell’equazione N-S possa far luce per comprendere meglio i flussi dinamici e portare a stabilire nuovi e migliori approcci per risolvere i complicati problemi di flusso in futuro.